Cointegration from a Pure-Jump Transaction-Level Price Model

نویسندگان

  • Clifford M. Hurvich
  • Yi Wang
چکیده

We propose a new transaction-level bivariate log-price model, which yields fractional or standard cointegration. To the best of our knowledge, all existing models for cointegration require the choice of a fixed sampling interval ∆t. By contrast, our proposed model is constructed at the transaction level, thus determining the properties of returns at all sampling frequencies. The two ingredients of our model are a Long Memory Stochastic Duration process for the waiting times {τk} between trades, and a pair of stationary noise processes ({ek} and {ηk}) which determine the jump sizes in the pure-jump log-price process. The {ek}, assumed to be i.i.d. Gaussian, produce a Martingale component in log prices. We assume that the microstructure noise {ηk} obeys a certain model with memory parameter dη ∈ (−1/2, 0) (fractional cointegration case) or dη = −1 (standard cointegration case). Our log-price model includes feedback between the disturbances of the two log-price series. This feedback yields cointegration, in that there exists a linear combination of the two series that reduces the memory parameter from 1 to 1 + dη ∈ (0.5, 1) ∪ {0}. Returns at sampling interval ∆t are asymptotically uncorrelated at any fixed lag as ∆t increases. We prove that the cointegrating parameter can be consistently estimated by the ordinary least-squares estimator, and obtain a lower bound on the rate of convergence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Limit Laws in Transaction-Level Asset Price Models∗

We consider pure-jump transaction-level models for asset prices in continuous time, driven by point processes. In a bivariate model that admits cointegration, we allow for time deformations to account for such effects as intraday seasonal patterns in volatility, and non-trading periods that may be different for the two assets. Most assumptions are stated directly on the point process, though we...

متن کامل

A Transaction-Level Pure-Jump Model Yielding Cointegration

A contemporaneous linear combination of two or more time series is less persistent than the individual series. Engle and Granger (1987) allowed for both standard and fractional cointegration. Under standard cointegration, the memory parameter is reduced from 1 to 0, while under fractional cointegration the level of reduction need not be an integer thus is more general. Empirical examples includ...

متن کامل

Price Relationships and Spillover Effects of Price Volatilities in Iran's Rice Market

Rice plays an especial role in Iranian households' nutrition basket. The volatilities of its price during recent years caused consumers' dissatisfaction. This paper investigates spillover effects of price volatilities (at the wholesale and retail levels) in the Guilan Province rice market. The Generalized Autoregressive Conditional Hetroscedasitic (GARCH) model was used for the monthly time per...

متن کامل

Long-Run and Short-Run Causality between Stock Price and Gold Price: Evidence of VECM Analysis from India

The prime objective of the study is to identify the long-run and short-run relationship between Indian stock price viz., BSE SENSEX (hereafter named as BSE) and gold price (GOLD) in India. The daily closing price data were collected for the period of ten years ranging from 1st April 2004 to 31st March 2014 with 2490 observations. The study employed two models: Model one us...

متن کامل

Pricing of Commodity Futures Contract by Using of Spot Price Jump-Diffusion Process

Futures contract is one of the most important derivatives that is used in financial markets in all over the world to buy or sell an asset or commodity in the future. Pricing of this tool depends on expected price of asset or commodity at the maturity date. According to this, theoretical futures pricing models try to find this expected price in order to use in the futures contract. So in this ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006